Células madre derivadas de sangre menstrual: elementos a tener en cuenta en un proyecto para aprovechar sus propiedades biológicas y potencial terapéutico
Contenido principal del artículo
Resumen
Las células madre obtenidas a partir de sangre menstrual han demostrado poseer una elevada capacidad de autorrenovación, alta tasa de proliferación y versatilidad para diferenciarse en múltiples linajes celulares, entre ellos osteocitos, adipocitos, condrocitos, neuronas y células cardíacas. Estas células comparten muchos marcadores con las células madre mesenquimales clásicas, pero presentan una mayor capacidad proliferativa y un perfil inmunomodulador más destacado, lo que las posiciona como candidatas óptimas para terapias celulares avanzadas. El objetivo de esta investigación es analizar las propiedades morfológicas y terapéuticas de las células madre obtenidas a partir de sangre menstrual para facilitar la gestión de proyectos que aprovechen estas características. Se desarrolló una investigación cualitativa de tipo retrospectivo, basada en la revisión sistemática de la producción científica publicada sobre las células madre derivadas de sangre menstrual, sin restricción idiomática. Se recopiló un total de 35 investigaciones desarrolladas entre los años 2015 y 2025, ambos inclusive, donde se aprecia un incremento de estudio de las células madre obtenidas a partir de sangre menstrual a partir del 2021. Como resultados se comprobaron, a nivel de laboratorio, aplicaciones terapéuticas en múltiples patologías, entre ellas enfermedades uterinas, neurodegenerativas como el Alzheimer y el Parkinson, cardiopatías isquémicas, Diabetes mellitus tipo 1, heridas crónicas y quemaduras. En estos casos, se observa una combinación de mecanismos beneficiosos que incluyen la secreción de factores tróficos y exosomas, la modulación inmunitaria y la estimulación de la regeneración tisular
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores mantienen la titularidad de su obra, publicándola bajo [CC-BY-NC-SA 4.0]. Esta licencia permite compartir y adaptar el contenido con fines no comerciales, exigiendo siempre reconocimiento de autoría y que las derivaciones usen la misma licencia
Citas
Advani, D., Villarreal Barragan, J., Statache, G., Kadri, N. & Kohli, N. (2025). Upcycled Mesenchymal Stem Cells: Repurposing Biological Waste Towards Sustainable Regenerative Therapies. Cell Therapy & Engineering Connect, 1, 0003. https://doi.org/10.69709/CellEngC.2025.101060
Agarwal, S. (2025). Optimizing Induced Pluripotent Stem Cells stability and reprogramming: bridging regenerative medicine and cancer treatment through proposed Antibody-Transcription Factor Conjugates. Journal of High School Science, 9(1), 105-132. https://doi.org/10.64336/001c.129931
Aleahmad, M. Ghanavatinejad, A, Bozorgmehr, M., Shokri, M. R., Nikoo, S., Tavakoli, M., Kazemnejad, S., Shokri, F., Zarnani, A. H. (2018). Menstrual Blood-Derived Stromal Stem Cells Augment CD4+ T Cells Proliferation. Avicenna journal of medical biotechnology, 10(3), 183-191. https://pubmed.ncbi.nlm.nih.gov/30090214/
Al-Zahrani, M., Bauthman, N. M., Abdulaziz Alzahrani, Y., Almohaimeed, H. M., Alsolami, K., Al-Sarraj, F., Hakeem, G. H., Ali Alahmari, M., Azher, Z. A. & Makhlof, R. T. M. (2024). Transplantation of hyaluronic acid and menstrual blood-derived stem cells accelerated wound healing in a diabetic rat model. Tissue & cell, 89, 102442. https://doi.org/10.1016/j.tice.2024.102442
An, W., Zhang, W., Qi, J., Xu, W., Long, Y., Qin, H. & Yao, K. (2025). Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Molecular Medicine, 31, 75. https://doi.org/10.1186/s10020-025-01120-w
Aphkhazava, D., Sulashvili, N. & Tkemaladze, J. (2025). Stem Cell Systems and Regeneration. Georgian Scientists, 7(1), 271-319. https://doi.org/10.52340/gs.2025.07.01.26
Awano-Kim, S., Hosoya, S., Yokomizo, R., Kishi, H. & Okamoto, A. (2025). Novel therapeutic strategies for Asherman's syndrome: Endometrial regeneration using menstrual blood-derived stem cells. Regenerative Therapy, 29, 328-340. https://doi.org/https://doi.org/10.1016/j.reth.2025.03.019
Bellalta, S., Pinheiro-Machado, E., Prins, J., Plösch, T., Casanello, P. & Faas, M. (2025). Disrupted stemness and redox homeostasis in mesenchymal stem cells of neonates from mothers with obesity: implications for increased adiposity. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.14.648714
Bozorgmehr, M., Gurung, S., Darzi, S., Nikoo, S., Kazemnejad, S., Zarnani, A. H. & Gargett, C. E. (2020). Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Frontiers in Cell and Developmental Biology, 8, 497. https://doi.org/10.3389/fcell.2020.00497
Chen, L., Qu, J. & Xiang, C. (2019a). The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Research & Therapy, 10, 1. https://doi.org/10.1186/s13287-018-1105-9
Chen, L., Qu, J., Cheng, T., Chen, X. & Xiang, C. (2019b). Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Research & Therapy, 10, 406. https://doi.org/10.1186/s13287-019-1503-7
Cieśla, J. & Tomsia, M. (2025). Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochemistry and Cell Biology, 163, 27. https://doi.org/10.1007/s00418-025-02356-7
Cuenca, J., Le-Gatt, A., Castillo, V., Belletti, J., Díaz, M., Kurte G, M., Gonzalez, P. L., Alcayaga-Miranda, F., Schuh C. M. A. P., Ezquer, F., Ezquer, M. & Khoury, M. (2018). The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration. Frontiers in Physiology, 9, 464. https://doi.org/10.3389/fphys.2018.00464
Dalirfardouei, R., Jamialahmadi, K., Jafarian, A. H. & Mahdipour, E. (2019). Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. Journal of Tissue Engineering and Regenerative Medicine, 13(4), 555–568. https://doi.org/10.1002/term.2799
de Pedro, M. Á., Pulido, M., Álvarez, V., Marchena, A. M., Sánchez-Margallo, F. M. & López, E. (2025). Bioinformatic analysis of the therapeutic potential of the secretome released by menstrual blood-derived stromal cells (menscs) as an adjuvant in the treatment of ovarian cancer. British Journal of Surgery, 112(Supplement_2), znae322.027. https://doi.org/10.1093/bjs/znae322.027
de Pedro, M. Á., Pulido, M., Marinaro, F., Álvarez, V., Báez-Díaz, C., Blanco, V., Silla-Castro, J. C., Sanchez-Cabo, F., Sánchez-Margallo, F. M., Crisóstomo, V., Casado, J. G. & López, E. (2022). Intrapericardial Administration of Secretomes from Menstrual Blood-Derived Mesenchymal Stromal Cells: Effects on Immune-Related Genes in a Porcine Model of Myocardial Infarction. Biomedicines, 10(5), 1117. https://doi.org/10.3390/biomedicines10051117
Fu, J., Zhang, Q., Zhang, N., Zhou, S., Fang, Y., Li, Y., Yuan, L., Chen, L. & Xiang, C. (2024). Human Menstrual Blood- Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation. Biomolecules, 14(6), 671. https://doi.org/10.3390/biom14060671
Ghazimoradi, M. H., Khalafizadeh, A. & Babashah, S. (2022). A critical review on induced totipotent stem cells: Types and methods. Stem Cell Research, 63, 102857. https://doi.org/10.1016/j.scr.2022.102857
Gu, N. Y., Ryu, G. S., Park, G. N., Lee, J. Y., Cho, Y. S., Yang, D. K. & Lee, H. J. (2025). Enhanced susceptibility of porcine muscle-derived mesenchymal stem cells to Aujeszky’s virus compared Vero cells. Animal Biotechnology, 36(1), 2479677. https://doi.org/10.1080/10495398.2025.2479677
Hassanpour Khodaei, S., Sabetkam, S., Kalarestaghi, H., Dizaji Asl, K., Mazloumi, Z. Bahramloo, M., Norouzi, N., Naderali, E. & Rafat, A. (2025). Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Molecular Biology Reports, 52(10). https://doi.org/10.1007/s11033-024-10106-6
Hoh, Y. K. (2025). An Instant Update on Stem Cell Therapy. The American Biology Teacher, 87(1), 6-12. https://doi.org/10.1525/abt.2025.87.1.6
Hojjat, A., Mansour, R. N., Enderami, S. E., Hassannia, H., Mahdavi, M., Mellati, A., Mehdipour Chari, K., Salarinia, R. & Saburi, E. (2023). The differentiation and generation of glucose-sensitive beta like-cells from menstrual blood-derived stem cells using an optimized differentiation medium with platelet-rich plasma (PRP). Acta histochemica, 125(3), 152025. https://doi.org/10.1016/j.acthis.2023.152025
Hung, C. Y., Hsueh, T. Y., Rethi, L., Lu, H. T. & Chuang, A. E. Y. (2025). Advancements in regenerative medicine: a comprehensive review of stem cell and growth factor therapies for osteoarthritis. Journal of Materials Chemistry B, 13(15), 4494-4526. https://doi.org/10.1039/D4TB01769B
Iqbal, I., Ullah, I., Peng, T., Wang, W. & Ma, N. (2025). An end-to-end deep convolutional neural network-based data-driven fusion framework for identification of human induced pluripotent stem cell-derived endothelial cells in photomicrographs. Engineering Applications of Artificial Intelligence, 139, 109573. https://doi.org/10.1016/j.engappai.2024.109573
Kalra, K. & Tomar, P. C. (2014). Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2(7), 919-930. https://www.imedpub.com/articles-pdfs/stem-cell-basics-classification-andapplications.pdf
Li, H., Wei, J., Zhang, Z., Li, J., Ma, Y., Zhang, P. & Lin, J. (2023). Menstrual blood-derived endometrial stem cells alleviate neuroinflammation by modulating M1/M2 polarization in cell and rat Parkinson’s disease models. Stem Cell Research & Therapy, 14, 85. https://doi.org/10.1186/s13287-023-03330-7
Liu, Y., Niu, R., Li, W., Lin, J., Stamm, C., Steinhoff, G. & Ma, N. (2019). Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cellular and Molecular Life Sciences, 76, 1681–1695. https://doi.org/10.1007/s00018-019-03019-2
Llorente, V., Velarde, P., Desco, M. & Gómez-Gaviro, M. V. (2022). Current Understanding of the Neural Stem Cell Niches. Cells, 11(19), 3002. https://doi.org/10.3390/cells11193002
Lv, H., Hu, Y., Cui, Z. & Jia, H. (2018). Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Research & Therapy, 9, 325. https://doi.org/10.1186/s13287-018-1067-y
Ma, C., Yi, Y. & Guan, C. (2025). Menstrual Blood-Derived Mesenchymal Stem Cells Improve Endometrial Receptivity in a Mouse Model of Embryonic Implantation Dysfunction. Cellular Reprogramming, 27(3). https://doi.org/10.1089/cell.2024.0071
Mankuzhy, P. D., Aeri, A., Gorla, M., Chandra, V., Thirupathi, Y. & Sharma, T. G. (2025). Translational Potential and Therapeutic Strategies of Stem Cells in Livestock and Companion Animals: An Update and Way Forward. In R. Shanker Verma (Ed.), Stem Cell Biology. A Regenerative Tissue Perspective (pp. 245-287). World Scientific. https://doi.org/doi:10.1142/9789811294891_0009
Mannino, G., Russo, C., Maugeri, G., Musumeci, G., Vicario, N., Tibullo, D., Giuffrida, R., Parenti, R. & Lo Furno, D. (2022). Adult stem cell niches for tissue homeostasis. Journal of Cellular Physiology, 237(1), 239-257. https://doi.org/doi:10.1002/jcp.30562
Manshori, M., Kazemnejad, S., Naderi, N., Darzi, M., Aboutaleb, N. & Golshahi, H. (2022). Greater angiogenic and immunoregulatory potency of bFGF and 5-aza-2ʹ-deoxycytidine pre-treated menstrual blood stem cells in compare to bone marrow stem cells in rat model of myocardial infarction. BMC Cardiovascular Disorders, 22, 578. https://doi.org/10.1186/s12872-022-03032-7
Mirzadegan, E., Golshahi, H., Saffarian, Z., Darzi, M., Khorasani, S., Edalatkhah, H., Saliminejad, K. & Kazemnejad, S. (2022). The remarkable effect of menstrual blood stem cells seeded on bilayer scaffold composed of amniotic membrane and silk fibroin aiming to promote wound healing in diabetic mice. International immunopharmacology, 102, 108404. https://doi.org/10.1016/j.intimp.2021.108404
Narayanan, S., Paramshetti, S., Angolkar, M., Gangadharappa, H. V., Vaijanathappa, J., Ambhore, N. S., Haripriya, G., Osmani, R. A. M. & Asha Spandana, K. M. (2024). Stem cell-based therapy for neurodegenerative disorders: progress and challenges. In T. S. Koduru, R. A. M. Osmani, E. Singh & S. Dutta (Eds.), The Neurodegeneration Revolution: Emerging Therapies and Sustainable Solutions (pp. 243-265). Academic Press. https://doi.org/10.1016/B978-0-443-28822-7.00025-8
Nisat, U. T., Dutta, M., Ullah, M. H. & Khandaker, M. U. (2025). Stem cell therapeutics in neurological disorders: classification, mechanisms and clinical applications. In M. U. Khandaker & M. Kazi (Eds.), The Nervous System. Stem Cell Innovation in Health & Disease (pp. 61-80). Academic Press. https://doi.org/10.1016/B978-0-443-27414-5.00004-X
Oliveira Rodrigues, M. C., Lippert, T., Nguyen, H., Kaelber, S., Sanberg, P. R. & Borlongan, C. V. (2016). Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects. In F., Karimi-Busheri & M. Weinfeld (Eds), Advances in experimental medicine and biology, 951, 111–121. https://doi.org/10.1007/978-3-319-45457-3_9
Park, M. N., Kim, M., Lee, S., Kang, S., Ahn, C. H., Tallei, T. E., Kim, W. & Kim, B. (2025). Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology. Antioxidants, 14(5), 501. https://doi.org/10.3390/antiox14050501
Robalo Cordeiro, M., Anjinho Carvalhos, C. & Figueiredo-Dias, M. (2023). The Emerging Role of Menstrual-Blood-Derived Stem Cells in Endometriosis. Biomedicines, 11(1), 39. https://doi.org/10.3390/biomedicines11010039
Robalo Cordeiro, M., Roque, R., Laranjeiro, B., Carvalhos, C. & Figueiredo-Dias, M. (2024). Menstrual Blood Stem Cells-Derived Exosomes as Promising Therapeutic Tools in Premature Ovarian Insufficiency Induced by Gonadotoxic Systemic Anticancer Treatment. International Journal of Molecular Sciences, 25(15), 8468. https://doi.org/10.3390/ijms25158468
Sadiasa, A., Werkmeister, J. A., Gurung, S. & Gargett, C. E. (2025). Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opinion on Biological Therapy, 25(3), 285-307. https://doi.org/10.1080/14712598.2025.2465826
Sanchez-Mata, A. & Gonzalez-Muñoz, E. (2021). Understanding menstrual blood-derived stromal/stem cells: Definition and properties. Are we rushing into their therapeutic applications? iScience, 24(12), 103501. https://doi.org/10.1016/j.isci.2021.103501
Soto-Mercado, V., Mendivil-Perez, M., Jimenez-Del-Rio, M. & Velez-Pardo, C. (2025). Combination of Epigallocatechin-3-Gallate and Tramiprosate Prevent Accumulation of Intracellular Aβ and Dysfunctional Autophagy–Lysosomal Pathway at Earliest Stage of Transdifferentiation of Mesenchymal Stromal Cells into PSEN1 E280A Cholinergic-like Neurons. International Journal of Molecular Sciences, 26(8), 3756. https://doi.org/10.3390/ijms26083756
Suárez Carrasco, I., de Pedro Muñoz, M. Á., Pulido Fresneda, M., Álvarez Pérez, V., Marchena López, A. M., Sánchez Margallo, F. M. & López Nieto, E. (2025). Prediction by bioinformatics analysis of the ability of micrornas in the secretome of menstrual blood-derived stem cells (menscs) as a treatment for ENDOMETRiosis. British Journal of Surgery, 112(Supplement_2). https://doi.org/10.1093/bjs/znae322.029
Temsamani, F., Agalit, A. & Idrissi Serhrouchni, K. (2025) Methods for Pluripotent Stem Cell Characterization: A Narrative Review. Cureus, 17(1), e77362. https://doi.org/10.7759/cureus.77362
Tian, Z., Yu, T., Liu, J., Wang, T. & Higuchi, A. (2023). Introduction to stem cells. In Progress in Molecular Biology and Translational Science (pp. 3-32), 199. Academic Press. https://doi.org/10.1016/bs.pmbts.2023.02.012
Uzieliene, I., Urbonaite, G., Tachtamisevaite, Z., Mobasheri, A. & Bernotiene, E. (2018). The Potential of Menstrual Blood-Derived Mesenchymal Stem Cells for Cartilage Repair and Regeneration: Novel Aspects. Stem cells international, 2018, 5748126. https://doi.org/10.1155/2018/5748126
Velasteguí Peñafiel, E., Castillo, M. E., Ortiz, F., Vivanco-Arias, C. & Vinueza-Flores, A. (2025). Cultivo y terapia celular: tecnología aplicable en la biomedicina actual y futura. Metro Ciencia, 33(1), 60-70. https://doi.org/10.47464/MetroCiencia/vol33/1/2025/60-70
Wang, M., Zhao, X., Cui, Y., Gui, H., Wang, S., Liu, Z. & Wang, X. (2025). Extracellular vesicles in burn injury: roles, mechanisms, and applications. Burns & Trauma, 13, tkaf006. https://doi.org/10.1093/burnst/tkaf006
Woll, P. S. & Mead, A. J. (2025). Human stem cells and haemopoiesis. In A. J. Mead, M. A. Laffan, G. P. Collins,, D. Hay & A. V. Hoffbrand (Eds.), Hoffbrand's Postgraduate Haematology (pp. 1-14). Wiley-Blackwell. https://doi.org/10.1002/9781119706687.ch1
Worku, M. G. (2021). Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. Stem Cells and Cloning: Advances and Applications, 14, 3–7. https://doi.org/10.2147/SCCAA.S304887
Xu, Z., Zhang, G., Zhang, X., Lei, Y., Sun, Y., He, Y., Yang, F., Nan, W., Xing, X., Li, Y. & Lin, J. (2023). Menstrual blood-derived endometrial stem cells inhibit neuroinflammation by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 pathway. The International Journal of Biochemistry & Cell Biology, 157, 106386. https://doi.org/10.1016/j.biocel.2023.106386